Aqui em nosso blog já fizemos várias matérias sobre IA é seus avanços. Isso porque fazemos questão de deixá-lo por dentro do que acontece no mundo dos negócios, principalmente no nicho da tecnologia.
A Pasquali Solution é uma empresa que está há quase duas décadas na área de alocação de profissionais de TI.
Dito isso, nós conseguimos, ao longo desses anos, galgar mais conhecimentos sobre as mais variadas vertentes.
Desta vez, trouxemos um pouco mais de conhecimento sobre o tema IA e separamos um TOP 5 de etapas para que você possa preparar sua empresa para a era digital e a inserção da IA.
A inteligência artificial é provavelmente a invenção mais importante da humanidade. É uma ideia de 60 anos que decolou cinco anos atrás, quando chips rápidos permitiam computação maciça e sensores, câmeras e robôs alimentavam algoritmos com fome de dados.
Passamos em alguns anos para uma nova era em que o aprendizado de máquina (um subconjunto funcional de IA), big data e tecnologias capacitadoras estão transformando todas as áreas. Em todos os setores há um grande conjunto de dados por trás de cada pergunta. Cada campo é computacional: saúde, manufatura, direito, finanças e contabilidade, varejo e imóveis. Todos trabalhamos com máquinas inteligentes – e elas estão ficando inteligentes rapidamente.
Um relatório do Fórum Econômico Mundial indicou que 89% das empresas americanas planejam adotar análises de big data de usuários e entidades até 2022, enquanto mais de 70% desejam integrar a Internet das Coisas, explorar mercados habilitados para web e aplicativos e tomar vantagem do aprendizado de máquina e da computação em nuvem.
Dadas essas mudanças importantes e rápidas, é um bom momento para considerar o que os jovens precisam saber sobre IA e tecnologia da informação. Primeiro, todos precisam ser capazes de reconhecer a IA e sua influência nas pessoas e sistemas e ser proativos como usuário e cidadão. Segundo, todos devem ter a oportunidade de usar IA e big data para resolver problemas. E terceiro, os jovens interessados em ciência da computação como carreira devem ter um caminho para a construção da IA.
Os computadores percebem o mundo usando sensores. Os exemplos incluem reconhecimento de fala e visão computacional; questões emergentes incluem a natureza da inteligência e as limitações da percepção humana e do computador.
Os agentes mantêm representações do mundo e as usam para raciocinar. Os exemplos incluem tipos de algoritmos, o trabalho que eles fazem e suas limitações.
Os computadores podem aprender com os dados. Os exemplos incluem tipos de aprendizado de máquina – no entanto, existem preocupações sobre questões como viés nos dados de treinamento.
Agentes inteligentes exigem muitos tipos de conhecimento para interagir naturalmente com os seres humanos. Os exemplos incluem a interação com assistentes digitais, chatbots e robôs. Questões emergentes envolvem a natureza da consciência e as limitações da interação da IA.
As aplicações de IA podem impactar a sociedade de maneiras positivas e negativas. Questões emergentes incluem o uso, justiça e transparência de algoritmos e prováveis impactos sociais.
Empresas
As empresas adeptas da tecnologia tem o potencial de aprimorar as operações com a implementação correta das tecnologias de inteligência artificial.
De fato, uma ampla implementação comercial da IA tem o potencial de fazer mais mal do que bem. Sem um plano adequado para adoção, as empresas podem sofrer as conseqüências prejudiciais da má alocação de recursos e financiamento. O resultado? O reverso da otimização, perda de tempo e, em última análise, ROI negativo – fatores que uma empresa em ritmo acelerado não pode arriscar. Portanto, é importante estabelecer um roteiro estratégico para a adoção acelerada da IA, da qual as empresas digitalmente maduras possam seguir, implementar e posteriormente se beneficiar.
Uma breve visão geral dos principais modelos de maturidade da IA
Os modelos de maturidade ajudam as empresas a se concentrarem em suas iniciativas de Inteligência Artificial. Esses modelos devem fornecer uma estrutura útil para identificar seu potencial impacto estratégico nos negócios, avaliar os atuais recursos de IA da organização e priorizar investimentos em tecnologias, habilidades e processos necessários para aumentar a prontidão e alcançar os resultados desejados.
Os modelos de maturidade permitem que os profissionais determinem se as ambições de IA de uma empresa são ou não exageradas ou realistas. Além disso, os modelos de maturidade devem ser úteis o suficiente para capturar o núcleo do que a IA oferece sem criar a falsa implicação de que existe um corpo estático das melhores práticas de implementação.
Abaixo estão alguns modelos e metodologias que foram observados como parte do Modelo de Maturidade dos Pioneiros da IA:
- A estrutura “IA pragmática” dos “blocos de construção”: proposta por Mike Gualtieri, da Forrester Research, essa estrutura defende a aceleração da evolução da tecnologia corporativa através da adaptação passo a passo das tecnologias de IA de “blocos de construção”, como aprendizado profundo e aprendizado de máquina.
- Modelo de maturidade da IA do Gartner: propõe indicadores de maturidade para medir o progresso da adoção da IA e ajustar as metas da empresa, bem como a utilização da estrutura de “blocos de construção” acima.
- Modelo de Maturidade Adrian Bowles: essa estrutura descrita por Adrian Bowles, da Aragon Research, tem como objetivo avaliar o alcance de uma empresa na IA com base em sua tecnologia e habilidades atuais.
- Modelo de abordagem da fase de maturidade da organização empresarial: um roteiro de maturidade passo a passo que começa com a automação, seguido pela centralização e digitalização dos dados e termina com a reformulação do ambiente de trabalho para se alinhar totalmente às ambições da IA.
- As quatro ondas do negócio inteligente por dia de trabalho: a Workday, divide a maturidade da IA em quatro estágios simples: automação, informação, descoberta e transformação.
- Curva de maturidade da IA da Microsoft: semelhante ao Workday, a Microsoft também decompõe a maturidade da IA em quatro etapas, começando com o entendimento de como aplicar a IA, a digitalização, a experimentação e a preparação do modelo de negócios com a prontidão da IA.
- Escada de inteligência artificial da IBM: a estrutura da IBM concentra-se nas etapas iniciais que uma empresa deve tomar para se preparar para a adoção da IA, como reconhecer recursos de dados e aumentar a análise por meio de métodos de aprendizado de máquina.
O Modelo de Maturidade dos Pioneiros da IA utiliza todas as estruturas acima para apresentar uma abordagem coesa e implementável.
A.I. Modelo de Maturidade de IA dos Pioneiros (Mark Minevich / AI Pioneers 2019)
O modelo de maturidade dos pioneiros da IA fornece uma estrutura para cada nível de maturidade da IA e descreve seu relacionamento com uma empresa em cada estágio. O avanço nessas etapas não é linear nem esperado a uma determinada velocidade de adoção. As empresas que implantam a IA devem abordar o roteiro com vontade de mudar a velocidade e a estratégia ao longo da progressão e manter o modelo em mente como uma ferramenta de medição e benchmarking, com o objetivo de ajudá-las a avançar nas etapas subsequentes da maturidade.
Exemplos relevantes dessa estrutura em ação incluem a NBA utilizando a IA para exibir momentos importantes dos jogos de basquete ou o TikTok acionando seu algoritmo de recomendação do usuário com tecnologias de aprendizado de máquina. Ambas as empresas implementaram uma abordagem em fases para a adoção da inteligência artificial, conforme sugerido pelo modelo dos pioneiros da IA. Além disso, já tendo defendido uma mentalidade centrada em dados, a NBA e o TikTok já estavam tecnologicamente preparados e maduros desde o início para prosseguir corretamente com suas respectivas ambições de IA e, mais importante, com adoção acelerada. A NBA e o TikTok são exemplos perfeitos do que as empresas com o mais alto nível de maturidade de hoje se assemelham, um assunto que será discutido posteriormente.
Observando as empresas com o mais alto nível de maturidade de hoje
Em 2019, a Dataiku (uma empresa que desenvolve IA para soluções empresariais) realizou uma pesquisa intitulada “Pesquisa de maturidade da IA: onde estamos no caminho da IA corporativa?” Os resultados de mais de 350 participantes da pesquisa permitiram à Dataiku estabelecer insights concretos sobre o nível de maturidade das empresas digitais. Entre vários fatores, os dados da pesquisa, da Dataiku descobriu que as organizações de adoção de IA mais bem equipadas têm o seguinte em comum:
- As empresas já estão usando alguma forma de tecnologia de aprendizado de máquina para aumentar os processos;
- As empresas possuem unidades de dados dedicadas;
- As empresas instituem alguma forma de educação dos funcionários para se preparar para a adoção.
Para entender melhor as empresas com o mais alto nível de maturidade atual, é aconselhável revisar as métricas envolvidas na preparação da adoção. Estatísticas da Forbes revelam que 37% dos líderes da indústria de IA investiram mais de US $ 5 milhões em tecnologias de inteligência artificial para otimizar processos. Com base nas implementações de IA, o The Enterprisers Project mostra que a instituição da empresa de tecnologias de inteligência artificial aumentou três vezes nos últimos 12 meses, e 2 em cada 3 grandes organizações adotarão a IA de alguma forma nos próximos 24 meses.
Cada empresa centrada na IA seguiu alguma forma de roteiro de implementação para cumprir seus objetivos de maturidade de inteligência artificial. As informações a seguir fornecem uma orientação de 5 pontos que as empresas com inclinação digital podem instituir para acelerar a adoção da IA.
1. Mas primeiro, dados
A primeira etapa da jornada de adoção da IA exige que as empresas já possuam fortes recursos de análise de dados e coleta de métricas. Tecnologias de inteligência artificial, como algoritmos de aprendizado de máquina, devem receber um fluxo substancial e consistente de dados para serem úteis. Se as empresas não são orientadas a dados, o poder da IA desaparece, pois carece de combustível e capacidade de fornecer idéias significativas para orientar as decisões das empresas.
Atualmente, existem maneiras de calcular o nível de maturidade da adoção da IA para empresas, o que pode ajudar a apontar as organizações na direção certa para a implementação. Uma dessas ferramentas é fornecida pela Microsoft, que usa um questionário baseado em pesquisa para avaliar a capacidade de adoção das empresas. O Worldlink também fornece um guia de aprendizado de máquina em oito etapas e maturidade em inteligência artificial para permitir a auto-avaliação da organização. Mais importante, a utilização das referidas avaliações de maturidade em conjunto para empresas já centradas em dados é uma maneira infalível de alinhar as organizações em direção à adoção acelerada da IA e ao progresso contínuo na maturação.
2. Como posso ajudá-lo?
Tendo identificado fortes recursos de análise de dados, as empresas devem determinar como a IA pode ajudar, estabelecendo uma pergunta de negócios rigorosamente formulada. Neste momento, a intenção específica da IA é esclarecida. Por exemplo, as empresas podem otimizar as operações com IA por meio da automação de recursos humanos ou implementar algoritmos de aprendizado de máquina para analisar a satisfação e a produtividade dos funcionários. Qualquer que seja o objetivo, as empresas devem apresentar uma proposta de como a inteligência artificial pode ser útil para economizar tempo e acelerar o roteiro para a integração adequada da IA.
3. Testando as possibilidades
O próximo segmento do roteiro trata de testes e avaliações de aplicativos candidatos de IA. Antes da implantação oficial, as empresas devem avaliar os mecanismos de IA pretendidos em um nível micro, a fim de minimizar erros, aproveitar todo o potencial da IA e garantir uma transição suave na hora do lançamento. Isso significa projetar experimentos exclusivos e modificar os principais indicadores de desempenho (KPIs) para medir o progresso e a eficácia da iniciativa. Um exemplo de teste pode ser o teste A / B, no qual algoritmos e funcionários de aprendizado de máquina realizam processos idênticos em uma tentativa de determinar empiricamente a extensão da capacidade de manutenção da IA. Outros testes quantitativos incluem testes de exatidão, precisão e velocidade.
Em conjunto com a primeira rodada de experimentação, períodos de teste de várias semanas podem ser implementados para examinar e criticar mais a eficácia das metodologias deduzidas, como se as empresas já estivessem no ambiente pós-lançamento de curto prazo.
4. Teste decisivo da segunda rodada e estabelecimento de casos de uso concretos
Após a rodada inicial de testes, haveria uma fase experimental secundária definida por períodos de teste mais longos e o estabelecimento de casos de uso concretos. Durante a fase secundária os períodos de teste durariam mais tempo para emular melhor o ambiente pós-lançamento a longo prazo. O produto desse processo avaliativo final teria a forma de casos de uso definitivos de IA que poderiam aumentar positivamente as operações da empresa e, consequentemente, serem usados na próxima fase do roteiro de adoção: alterar o modelo de negócios.
5. Alterando o modelo de negócios para incluir a IA
Neste ponto da jornada de adoção da IA, as empresas precisam aumentar seus modelos de negócios para acomodar a inteligência artificial. Esta etapa do roteiro é crucial para retransmitir as implicações da IA para todas as partes interessadas envolvidas, de investidores a clientes e elaborar o impacto da instalação.
De olho no futuro
Depois que o modelo de negócios for alterado, as empresas terão atingido o nível adequado de maturidade para adotar corretamente a inteligência artificial, terminando assim a longa jornada para casa. Por fim, como a IA experimenta inovação persistente nos próximos anos após o lançamento, as empresas que implementaram um roteiro estratégico de adoção estarão bem equipadas para incluir os novos avanços tecnológicos.
De forma geral vimos que uma mentalidade centrada em dados é essencial para a conclusão bem-sucedida do processo como todo. A aceleração adequada da maturidade empresarial para adoção da IA significa que as empresas devem se concentrar em otimizar suas unidades de dados e preparar iniciativas educacionais antes de iniciar o processo de implementação. As organizações também devem ser dinâmicas em sua abordagem e estar dispostas a alterar sua estratégia de negócios para incorporar inteligência artificial a cada passo do caminho. Essa é a essência de uma empresa de IA digitalmente madura.
A Pasquali Solution é uma empresa B2B com core business em alocação de profissionais de TI. Estamos conectados com as novidades que o mundo dos negócios nos traz.
Para que possamos ajudar você a atingir seus objetivos e realizar seus projetos para fazer sua corporação crescer de forma exponencial, entre em contato conosco por email ou chat.